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The response of Duhem hysteretic system to externally and/or parametrically non-white
random excitations is investigated by using the stochastic averaging method. A class of
integrable Duhem hysteresis models covering many existing hysteresis models is identi"ed
and the potential energy and dissipated energy of Duhem hysteretic component are
determined. The Duhem hysteretic system under random excitations is replaced
equivalently by a non-hysteretic non-linear random system. The averaged Ito( 's stochastic
di!erential equation for the total energy is derived and the Fokker}Planck}Kolmogorov
equation associated with the averaged Ito( 's equation is solved to yield stationary probability
density of total energy, from which the statistics of system response can be evaluated. It is
observed that the numerical results by using the stochastic averaging method is in good
agreement with that from digital simulation.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Non-linear hysteretic behavior exists widely in mechanical and structural systems [1}4],
where the restoring force depends not only on the instantaneous deformation but also on
the past history of deformation [5]. In addition, there has been an increasing interest
recently in using smart materials [6}8] such as piezoceramics, shape memory alloys, and
electro-/magneto-rheological #uids, which exhibit signi"cant hysteresis. Various analytical
models including bilinear model and Bouc}Wen model [9}12] have been proposed for
representing the hysteretic constitutive relationship. However, the hysteresis models often
used in dynamic analysis are relatively simple and they cannot represent some complicated
hysteresis behaviors. In order to capture more accurately the complicated constitutive
behavior including soft-hardening features, etc., a Duhem di!erential model [1}4] has been
developed recently. This model is much more #exible and versatile than those often used in
dynamic analysis and thus it deserves further investigation and application in dynamic
analysis.
In mechanical and structural engineering "elds, dynamic loading such as wind or

earthquake ground motion is usually random in nature. For strongly non-linear hysteretic
systems, it is extremely di$cult to analytically determine the exact random response. So
several approximate solution techniques have been developed, including the equivalent
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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linearization method [13}17] and the stochastic averaging method [18}23]. Besides, an
approximate technique for solving the stationary Fokker}Planck}Kolmogorov (FPK)
equation recently developed by Er [24] may also be applied. The random responses of
bilinear and Bouc}Wen hysteretic systems have been studied by using these two methods
[5, 25}30]. However, few works on random dynamics of the Duhem hysteretic system with
local memory have been reported.
In the present paper, a class of antisymmetric integrable Duhem hysteresis models is

identi"ed and the potential energy and dissipated energy by integrable Duhem hysteretic
component are determined. A Duhem hysteretic system under externally and/or
parametrically non-white random excitations is replaced equivalently by a non-hysteretic
non-linear random system. The averaged Ito( 's stochastic di!erential equation for total
energy is derived by using the stochastic averaging method. The FPK equation associated
with the averaged Ito( equation is solved to yield stationary probability density of total
energy and the statistics of system response. Finally, an example of antisymmetric Duhem
hysteretic system under non-white random excitation is presented to illustrate the
application of the stochastic averaging method.
It may be pertinent to explain why we chose the stochastic averaging method for studying

the random response of Duhem hysteretic systems. It has been shown by Pradlwarter and
SchueK ller [31] that for hysteretic systems subjected to random excitation, the equivalent
linearization method usually yields excellent mean square velocity, good mean
square displacement but inaccurate probability densities of velocity and displacement and
thus the reliability. The stochastic averaging method, however, generally yields quite
good results for mean square displacement, mean square velocity as well as probability
densities of displacement and velocity [5, 27, 28, 30, 31]. On the other hand, only
one-dimensional averaged FPK equation has to be solved in using the stochastic averaging
method for Duhem hysteretic systems subject to random excitation with Kanai}Tajimi
spectral density and the stationary solution of the FPK equation can be obtained
readily, while "ve-dimensional FPK equations have to be solved if the approximate
method proposed by Er [24] is used since a "rst order di!erential equation is needed to
describe the hysteresis and a second order linear "lter to produce the random
excitation. Furthermore, the former method can be used to predict both stationary and
non-stationary response while the latter only the stationary response. Besides, there are
general formulae in the former method for certain class of problems and it is routine to
apply the method to a speci"c problem while experience is necessary for choosing the
parameters of the approximate probability density in using the latter method for a speci"c
problem.

2. INTEGRABLE DUHEM HYSTERESIS MODEL

The Duhem model for hysteresis is governed by the following "rst order di!erential
equation:

zR "g [x, z, sgn(xR )]xR "g
�
(x, z)xR

�
!g

�
(x, z)xR

�

"�
g
�
(x, z)xR , xR '0,

g
�
(x, z)xR , xR (0,

(1a)

xR
�

"( �xR �#xR )/2, xR
�

"(�xR �!xR )/2, (1b)



Figure 1. A representative of Duhem hysteresis loop.
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where z denotes hysteretic force; x denotes displacement; g
�
and g

�
are two continuous

functions of displacement and hysteretic force. According to Duhemmodel (1a) and (1b), the
hysteretic force is determined by g

�
for xR '0 and g

�
for xR (0. The corresponding hysteresis

loop in the (x, z) plane consists of two parts, i.e., ascending line z
�
(x) for xR '0 and

descending line z
�
(x) for xR (0. Both ascending line and descending line are independent of

the magnitude of velocity x� . The hysteretic force on ascending line or descending line
depends on not only the instantaneous displacement but also the local displacement history
since the last changes in velocity direction, but is independent of the displacement history
before that change. Thus, the Duhem hysteresis model has the characteristics of local
memory.
The potential energy ;(x) deposited in a hysteresis component can be expressed by the

following integrals for xR '0:

; (x)"�
�

!x
��

z
�
(x

�
) dx

�
, !a

�
)x)!x

��
, (2a)

; (x)"�
z
�
�� [z

�
(x)]

x
��

z
�
(x

�
) dx

�
, !x

��
)x)a

�
, (2b)

where a
�
and a

�
are negative and positive displacement amplitudes, respectively; x

��
and

x
��
are residual hysteresis displacements, see Figure 1. The potential energy by hysteresis

component for xR (0 can be expressed similarly. The area of hysteresis loop, A
�
, is equal to

the energy dissipated in one cycle by the hysteresis component, i.e.,

A
�
"� z(x) dx"�

a
�

!a
�

z
�
(x) dx#�

!a
�

a
�

z
�
(x) dx. (3)

Most hysteresis models have antisymmetric hysteresis loops. For antisymmetric Duhem
hysteresis model, g

�
(x, z)"g

�
(!x,!z), z

�
(x)"!z

�
(!x), a

�
"a

�
"a, x

��
"x

��
"x

�
.

In this case, the hysteretic force can be separated into an elastic part and an inelastic part,
i.e., z

�
"z�#z�

�
, z

�
"z�#z�

�
(superscripts e and p denote elastic part and inelastic part

respectively). Then the potential energy (2a), (2b) and the dissipated energy (3) are
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represented as follows:

; (x)"�
�

�

z�(x
�
) dx

�
#�

�

!x
�

z�
�
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�
) dx

�
, !a)x)!x

�
, (4a)
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�
, !x

�
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A
�
"� z�(x) dx"2 �

�

!a

z
�
(x) dx. (5)

In the general Duhem hysteresis model, there exists a class of hysteresis functions g
�
and

g
�
, for example, the ascending function of the form

g
�
(x, z)"dz

�
(x)/dx#h

�
(z!z

�
)h

�
(x), (6)

where z
�
(x), h

�
(x) and h

�
(z!z

�
) are arbitrary continuous and di!erentiable functions such

that the Duhem hysteresis equations (1a) and (1b) are analytically integrable. Integrating
equation (1) with equation (6) yields the ascending line

G
��
(z!z

�
)"G

��
(x), G

��
(z!z

�
)"�

z!z
�

�

du

h
�
(u)
, G

��
(x)"�

�

!x
�

h
�
(u) du (7)

and the hysteretic force for xR '0 is expressed as

z(x)"z
�
(x)#G��

��
[G

��
(x)], xR '0. (8a)

The expression of hysteretic force for xR (0 is then obtained by using the antisymmetric
relation as follows:

z(x)"!z
�
(!x)!G��

��
[G

��
(!x)], xR (0. (8b)

The class of hysteresis expressed by equations such as equations (8a) and (8b) is called the
integrable Duhem hysteresis. The integrable Duhem hysteresis model is quite general. It
includes many existing hysteresis models, such as the Bouc}Wen model [9, 10] and the
Yar}Hammond bilinear model [12], etc., as special cases. Thus, the class of integrable
Duhem hysteresis models is quite versatile.

3. STOCHASTIC AVERAGING OF DUHEM HYSTERETIC SYSTEMS UNDER
NON-WHITE RANDOM EXCITATIONS

Consider a Duhem hysteretic system subjected to random excitations. The equation of
motion is of the form

XG #2�XQ #Z(X, XQ )"f
�
(X, XQ )�

�
(t), j"1, 2,2 , m, (9)

where X denotes displacement; � is viscous damping coe$cient; Z denotes Duhem
hysteretic force governed by equations (1a) and (1b); f

�
(X, XQ ) represent the amplitudes of

external and/or parametric random excitations, which are continuous and di!erentiable
functions of displacement and velocity; �

�
(t) are wide-band stationary random excitations

with zero mean and correlation function R
�	
(�)"E [�

�
(t) �

	
(t#�)]; m is the number of

random excitations.
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The Duhem hysteretic system (9) with equations (1a) and (1b) under random excitations
can be replaced by the following non-hysteretic non-linear random system:

XG #[2�#2�
�
(H)]XQ #�; (X)/�X"f

�
(X,XQ )�

�
(t), (10)

where

H"xR �/2#;(x) (11)

is the total energy of the system; ; is the potential energy deposited in the hysteresis
component, which can be represented by equations (2a) and (2b), or (4a) and (4b); 2�

�
is the

equivalent quasi-linear damping coe$cient, which can be evaluated by using the following
formula:

2�
�
(H)"

A
�

2 �
a
�

!a
�

�2H!2;(x) dx

. (12)

To apply the stochastic averaging method [23] to the equivalent non-linear system (10),
let

sgn(X)�;(X)"�H cos�, XQ "!�2H sin� 0)�)2�. (13)

Equation (10) is transformed into the following "rst order di!erential equations for the total
energy and phase:

HQ "!2H sin�� [2�#2�
�
(H)]!�2H sin� f

�
(H, �) �

�
(t), (14a)

�� "
1
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(H))#
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�2H
f
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�
(t).

(14b)

Under the condition that damping and excitation are weak, the total energy is slowly
varying process and can be approximated as a Markov di!usion process. Performing time
averaging of equation (14a) yields the following Ito( equation:

dH"m(H) dt#�(H) dB(t), (15)

where B(t) is a unit Wiener process; drift coe$cient m(H) and di!usion coe$cient ��(H) are
expressed as
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(16b)
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in which 	)



represents time averaging. For certain constant H, responses X and XQ can be

treated as periodic functions. Then the integrands in equations (16a) and (16b) can be
expanded as the following Fourier series:
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By substituting equations (17a)}(17b) into equations (16a)}(16b) and by performing the time
averaging and then converting the expressions into space averaging ones, the following
averaged drift and di!usion coe$cients are obtained:
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where the Fourier coe$cients are represented in terms of the space integrals as follows:
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The FPK equation associated with the averaged Ito( equation (15) for the total energy is

�p
�t

#

�
�H

[m (H)p]!
1

2

��

�H�
[��(H) p]"0, (22)

where probability density p"p (H, t) [or p"p (H, t �H
�
, t

�
)] for the initial condition

p(H
�
, t

�
) [or p"� (H!H

�
)]. The stationary probability density of total energy can be

obtained from solving FPK equation (22) with �p/�t"0 as follows:

p (H)"
C

�� (H)
exp ��




�

2m(y)

��(y)
dy
, (23)

where C is a normalization constant. Then the response statistics of system (9) can be
evaluated. For example, the mean square displacement is represented by

E[X�]"�
�

�

p (H)

¹(H)
dH�2 �

�

��

x�dx

�2H!2;(x)
, (24)

where E [ ) ] denotes expectation operator.

4. EXAMPLE AND NUMERICAL RESULTS

Consider a Duhem hysteretic system subjected to random excitation (e
�
#e

�
X)� (t).

The non-white stationary excitation �(t) has the following Kanai}Tajimi spectral density
[32, 33]:
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where S
�
, �

�
and �

�
are the spectral parameters determined by the intensity and site

characteristics of excitation. The ascending function of antisymmetric integrable Duhem
hysteresis model with non-linear elasticity is taken as

g
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[�!� (z!k
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x	)], (26)

where k
�
and k

	
are linear and non-linear sti!nesses, respectively; �, � and 
 are hysteresis

constants. g
�
in equation (26) is a special case of that in equation (6). So the hysteretic force

z is obtained from equations (8a), (8b) and (26):
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z
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�
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The Duhem hysteresis model (27a) and (27b) can be used to describe soft-hardening
hysteresis characteristics such as that in wire-cable vibration isolator [34]. The potential
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energy and dissipated energy of hysteresis component in one cycle are
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where the residual hysteresis displacement x
�
and displacement amplitude a for certain

H are determined by
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The averaged Ito( 's stochastic di!erential equation for total energy H is of the form of
equation (15), where the drift and di!usion coe$cients are

m(H)"!

A
�

¹

!

4�
¹ �

�

��

�2H!2; (x) dx#

�
4
(b���

�
b���
�

#b���
�
d���
�
)�

�
(0)

#

�
2

�
�
���

(a���
�
a���
�

#a���
�
c���
�

#b���
�
b���
�

#b���
�
d���
�
)�

� �
2�i
¹ �, (31a)

�� (H)"2�H
�
�
���

a���
�
a���
�

�
��
2�i
¹ � (31b)

with the Fourier coe$cients
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For an external random excitation e
�
�(t), coe$cients c���

�
"d���

�
"0. The stationary

probability density p (H) is of the form of equation (23) and the mean square displacement
can be evaluated by using equation (24).



Figure 2. Two Duhem hysteresis loops in the numerical calculation (a) with hardening sti!ness, (b) with
softening sti!ness.
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Numerical computation has been made for the following parameter values: �"0)2,
k
�
"5)0 or 2)0, k

	
"0)03 or !0)03, �"0)1 or 0)3, 
"3)0 or 2)0, e

�
"1, e

�
"0, 0)12 or

0)03, S
�
"1)0, �

�
"3)08, �

�
"0)1. The hysteresis loops with hardening sti!ness (k

	
"0)03)

and softening sti!ness (k
	
"!0)03) in the numerical calculation are shown in Figure 2.

The Fourier coe$cients a���
�
(i"1, 2, 3) and b���

�
(i"0, 1, 2, 3) in the drift and di!usion

coe$cients as a function of total energy are shown in Figures 3 and 4 respectively. It is
found that these coe$cients for i'1 are much smaller than those for i)1. Thus, neglecting
the terms for i'3 in the expressions of drift and di!usion coe$cients (31a) and (31b) may
yield enough accurate results.
The mean square displacement response of the Duhem hysteretic system (9) to random

excitation with spectral density (25) as a function of the excitation intensity is shown in
Figures 5}7, where a solid line represents analytical results while a dotted line represents
results from digital simulation. Good agreement of the two results is observed for Duhem
systems with both hardening and softening sti!ness and for both external excitation only
and simultaneously external and parametric excitations. Theoretically, the stochastic
averaging method is applicable only when the damping is slight and the random excitation
is weak. Actually, it can be applied for large ranges of damping and random excitation
provided the di!erence between the energy inputted to the system by random excitation and



Figure 3. Fourier coe$cients a���
�
versus total energy H (k

�
"5)0, k

	
"0)03, �"0)1, 
"3)0, e

�
"0).

Figure 4. Fourier coe$cients b���
�
versus total energy H (k

�
"5)0, k

	
"0)03, �"0)1, 
"3)0, e

�
"0).

Figure 5. Mean square displacement response of Duhem hysteretic system (9) with hardening sti!ness to
external random excitation with spectral density (25) versus excitation intensity: *, analytical results; �, result
from digital simulation. Line 1: k

�
"2)0, k

	
"0)03, �"0)3, 
"2)0, e

�
"1, e

�
"0; line 2: k

�
"5)0, k

	
"0)03,

�"0)1, 
"3)0, e
�
"1, e

�
"0.
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Figure 6. Mean square displacement response of Duhem hysteretic system (9) with softening sti!ness to external
random excitation with spectral density (25) versus excitation intensity:*, analytical result;�, result from digital
simulation. Line 1: k

�
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�
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�
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�
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Figure 7. Mean square displacement response of Duhem hysteretic system (9) with hardening sti!ness to both
external and parametric random excitations with spectral density (25) versus excitation intensity: *, analytical
results; �, result from digital simulation. Line 1: k

�
"2)0, k

	
"0)03, �"0)3, 
"2)0, e

�
"1, e

�
"0)12; line 2:

k
�
"5)0, k

	
"0)03, �"0)1, 
"3)0, e

�
"1, e

�
"0)03.
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that outputted from the system by damping during a period of vibration is small compared
with the system energy itself. For "xed damping, error increases slightly as the intensity of
random excitation increases as can be seen from Figures 5}7 because the energy di!erence
increases.

5. CONCLUSIONS

In the present paper, a class of integrable Duhem hysteresis models, covering many
existing hysteresis models, has been proposed to describe general hysteretic constitutive
relationship with local memory. The expressions for the potential energy and dissipated
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energy of Duhem hysteretic component have been obtained so that a Duhem hysteretic
system under random excitations can be replaced equivalently by a non-hysteretic
non-linear random system. The stochastic averaging method for Duhem hysteretic systems
subjected to externally and/or parametrically non-white random excitation has been
developed, where time averaging is "nally converted into the space averaging for certain
total energy. The mean square response obtained by using the proposed method has been
compared with that from digital simulation. Taking "rst few terms of the Fourier series in
averaged drift and di!usion coe$cients yields quite accurate results.
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